Гормоны классификация и механизм

Гормоны, их классификация. Свойства гормонов. Типы воздействия гормонов на организм. Транспорт и выведение гормонов из организма. Регуляция образования и секреции гормонов

Гормоны классификация и механизм

Эндокринные железы – специализированные популяции секреторных клеток, син-

тезирующие гормоны. К эндокринным железам относятся: эпифиз, гипофиз, щитовидная

железа, паращитовидные железы, островки Лангерганса поджелудочной железы, кора и

мозговое вещество надпочечников, яичники, семенники, плацента, тимус. Железы внут-

ренней секреции не имеют выводных протоков, а выделяют свой секрет во внутреннюю

среду организма (кровь, лимфа, ликвор). Гормоны участвуют в гуморальной регуляции

функций организма.

2. Свойства гормонов

Гормоны образуются в специализированных клетках эндокринных желез (эпители-

альных и нейросекреторных). Они обладают следующими свойствами:

1) высокая биологическая активность (действие в малых дозах);

2) специфичность действия;

3) дистантный характер действия (действие на расстоянии от той железы где он

образовался).

3. Классификация гормонов

Биохимическая классификация:

1) полипептиды и белки с наличием углеводного компонента;

2) аминокислоты и их производные;

3) стероиды.

Функциональная классификация:

1) эффекторные гормоны;

2) тропные гормоны;

3) рилизинг-факторы.

4. Судьба гормонов в организме

1 этап – транспорт гормонов:

А) в свободном виде;

Б) в комплексе с белками;

В) в адсорбированном виде на форменных элементах крови.

2 этап – реализация гормонального эффекта:

А) изменение активности ферментов;

Б) изменение проницаемости клеточных мембран;

В) синтез новых гормонов;

3 этап – инактивация гормонов:

А) путем образования соединений с белками;

Б) путем образования соединений с глюкуроновой кислотой;

В) путем окисления.

5. Механизм действия гормонов

Гормоны взаимодействуют со специальными структурами клетки – циторецепто-

рами. Различают два пути действия гормонов: 1) мембранный тип; внутриклеточный тип.

Особенности мембранного типа действия гормонов:

1) рецепторы гормонов расположены на наружной поверхности мембраны клетки-

мишени;

2) гормоны не проницаемы для клеточной мембраны;

3) для осуществления эффекта гормона требуются вторичные посредники –

цАМФ, цГМФ, инозитолтрифосфат, диацилглицерол, простагландины, ионы кальция и

другие;

4) у гормонов быстрый эффект действия, так как происходит активация уже синте-

зированных ферментов в клетке. К этой группе гормонов относятся все белковые пеп-

тидные гормоны и адреналин.

Особенности внутриклеточного типа действия гормонов:

1) гормоны легко проникают внутрь клетки;

2) их рецепторы расположены в ядре, митохондриях, рибосомах, цитозоле;

3) для осуществления их эффекта действия не требуются вторичные посредники;

4) для их действия характерна глубокая и длительная перестройка клеточного ме-

таболизма, связанное с влиянием на биосинтетические процессы. Поэтому эффект дейст-

вия этих гормонов относятся стероидные и йодированные гормоны (щитовидной желе-

зы).

6. Физиологическая роль гормонов в организме:

А) обеспечение физического, полового и умственного развития;

Б) адаптация организма (приспособление к изменениям внешней и внутренней

среды);

В) поддержание гомеостаза (постоянства состава и свойств внутренней среды ор-

ганизма);

Г) интеграция функций отдельных органов и систем.

7. Типы воздействия гормонов на организм

Гормоны оказывают четыре типа воздействия:

А) метаболическое – влияет на различные виды обмена веществ;

Б) морфогенетическое _______действие – влияют на рост, развитие и дифференцировку

тканей и органов, созревание организма;

В) пусковое действие – активируют работу того или иного органа;

Г) корригирующие действие – изменяют функции органов в соответствии с по-

требностями организма.

8. Регуляция образования гормонов

Различают:1) внутриклеточный механизм регуляции образования и секреции

гормонов, осуществляется за счет ферментов; 2) системный механизм.

К системным механизмам относятся:

1) нервно-проводниковый;

2) нервно-эндокринный;

3) эндокринный;

4) неэндокринный гуморальный.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/7_116018_gormoni-ih-klassifikatsiya-svoystva-gormonov-tipi-vozdeystviya-gormonov-na-organizm-transport-i-vivedenie-gormonov-iz-organizma-regulyatsiya-obrazovaniya-i-sekretsii-gormonov.html

Классификация гормонов

Гормоны классификация и механизм

Общая характеристика гормонов.

Гормоны – это биологически высокоактивные вещества, синтезирующиеся и выделяющиеся во внутреннюю среду организма эндокринными железами и оказывающие регулирующее влияние на функции удаленных от места их секреции органов и систем организма.

Эндокринная железа – это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов. К эндокринным железам относятся гипофиз, эпифиз, щитовидная железа, надпочечники (мозговое и корковое вещество), паращитовидные железы.

Поджелудочная железа и половые железы относятся к органам со смешанным типом секреции.

Одна и та же железа внутренней секреции может продуцировать неодинаковые по своему действию гормоны. Так, например, щитовидная железа продуцирует тироксин и тирокальцитонин. В то же время продукция одних и тех же гормонов может осуществляться разными эндокринными железами. Например, половые гормоны продуцируются и половыми железами, и надпочечниками.

Традиционно неэндокринные органы: почки, желудочно-кишечный тракт, сердце также способны к синтезу биологически активных веществ. Некоторые из них синтезируются так близко к своим органам-мишеням, что могут достигать их диффузией, не попадая в кровоток. Их называют гормонами местного действия. Клетки, вырабатывающие такие вещества, называют паракринными.

Ряд биологически активных веществ помимо гормональной функции могут выступать как медиаторы. Реализация гормональной и медиаторной функций определяется местом синтеза.

Например, адреналин и норадреналин.

Когда рассматривается их выработка в мозговом веществе надпочечников, их обычно называют гормонами, если речь идет об их образовании и выделении симпатическими окончаниями, их называют медиаторами.

Некоторые из регуляторных гипоталамических пептидов обнаружены не только в нейронах головного мозга, но и в особых клетках других органов (например кишечника). Клетки, вырабатывающие эти пептиды, образуют согласно современным представлениям диффузную нейроэндокринную систему, состоящую из разбросанных по разным органам и тканям клеток.

Клетки этой системы характеризуются высоким содержанием аминов, способностью к захвату предшественников аминов и наличием декарбоксилазы аминов.

Отсюда название системы по первым буквам английских слов Amine Precursors Uptake and Decarboxylating system – APUD-система – система захвата предшественников аминов и их декарбоксилирования.

Поэтому правомерно говорить не только об эндокринных железах, но и об эндокринной системе, которая объединяет все железы, ткани и клетки организма, выделяющие во внутреннюю среду специфические регуляторные вещества.

Классификация гормонов

Гормоны можно классифицировать, исходя из разных критериев:

По растворимости (гидрофильные и липофильные).

По химической структуре:

1.производные аминокислот: производные тирозина: тироксин, трийодтиронин, дофамин, адреналин, норадреналин;

2. белково-пептидные гормоны:

· полипептиды: глюкагон, кортикотропин, меланотропин, вазопрессин, окситоцин, пептидные гормоны желудка и кишечника;

· простые белки (протеины): инсулин, соматотропин, пролактин, паратгормон, кальцитонин;

· сложные белки (гликопротеиды): тиреотропин, фоллитропин, лютропин.

· стероидные гормоны: кортикостероиды (альдостерон, кортизол, кортикостерон); половые гормоны: андрогены (тестостерон), эстрогены и прогестерон.

3. По механизму передачи сигнала или по расположению рецепторов. По этому критерию гормоны делятся на 2 основные группы. К первой группе относятся стероиды, иодтиронины и кальцитриол. Рецепторы этих гормонов располагаются в цитоплазме или на ядре. Ко второй группе относятся водорастворимые гормоны, которые взаимодействуют с рецепторами, находящимися на плазматической мембране.

4. По природе сигнала, опосредующего гормональный внутриклеточный эффект.

5.

по биологическим функциям — гормоны, регулирующиеобмен углеводов, липидов и амино­кислот (инсулин, глюкагон, кортизол, адрена­лин), регулирующие водно-солевой об прессин, альдостерон),обмен кальция (паратгормон, кальцитриол, кальцитонин), регулирующиерепродуктивную функцию (эстрадиол, тестостерон, прогестерон). Тропные гормоны -либерины и статины гипоталамуса, некоторые гормоны гипофиза) регулируют синтез и других гормонов.

Несмотря на то, что гормоны имеют разное химическое строение, для них характерны некоторые общие биологические свойства.

Общие свойства гормонов:

1. Строгая специфичность (тропность) физиологического действия.

2. Высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах (10-6 – 10-10 моль/л)

3. Дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона.

4. Генерализованность действия.

5.

Пролонгированность действия.

Установлены четыре основных типа физиологического действия на организм: кинетическое, или пусковое, вызывающее определенную деятельность исполнительных органов; метаболическое (изменения обмена веществ); морфогенетическое (дифференциация тканей и органов, действие на рост, стимуляция формообразовательного процесса); корригирующее (изменение интенсивности функций органов и тканей).

Метаболическое действие гормонов осуществляется различными путями, среди которых наиболее важными являются следующие: 1.повышение или угнетение активности ферментов; 2. изменение проницаемости клеточных мембран; 3. регуляция ими биосинтетических и энергетических процессов.

Гормональный эффект опосредован следующими основными этапами:синтезом и поступлением в кровь, формами транспорта, клеточными механизмами действия гормонов.

Предыдущая123456789101112131415Следующая

Дата добавления: 2015-09-18; просмотров: 3753; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/5-25680.html

Гормоны. Классификация и механизм действия гормонов

Гормоны классификация и механизм

  • Размер: 9.1 Mегабайта
  • Количество слайдов: 46

Гормоны. Классификация и механизм действия гормонов. Автор – доцент Рыскина Е. А.

4 основные системы регуляции метаболизма: Центральная нервная система (за счет передачи сигналов посредством нервных импульсов и нейромедиаторов); Эндокринная система (с помощью гормонов, которые синтезируются в железах и транспортируются к клеткам-мишеням (на рис.

А); Паракринная и аутокринная системы (при участии сигнальных молекул, секретируемых из клеток в межклеточное пространство — эйкозаноидов, гистаминов, гормонов ЖКТ, цитокинов) (на рис. Б и В); Иммунная система (посредством специфических белков – антител, Т-рецепторов, белков комплекса гистосовместимости.

) Все уровни регуляции интегрированы и действуют как единое целое.

Эндокринная система регулирует обмен веществ посредством гормонов. Гормоны (др. -греч. ὁρμάω — возбуждаю, побуждаю) — — биологически активные органические соединения, которые вырабатываются в незначительных количествах в железах внутренней секреции, осуществляют гуморальную регуляцию обмена веществ и имеют различную химическую структуру.

Классическим гормонам присущ ряд признаков: Дистантность действия – синтез в железах внутренней секреции, а регуляция отдаленных тканей Избирательность действия Строгая специфичность действия Кратковременность действия Действуют в очень низких концентрациях, под контролем ЦНС и регуляция их действия осуществляется в большинстве случаев по типу обратной связи Действуют опосредованно через белковые рецепторы и ферментативные системы

Организация нервно-гормональной регуляции Существует строгая иерархия или соподчиненность гормонов. Поддержание уровня гормонов в организме в большинстве случаев обеспечивает механизм отрицательной обратной связи.

Регуляция уровня гормонов в организме Изменение концентрации метаболитов в клетках-мишенях по механизму отрицательной обратной связи подавляет синтез гормонов, действуя либо на эндокринные железы, либо на гипоталамус.

Существуют эндокринные железы для которых отсутствует регуляция тропными гормонами – паращитовидная железа, мозговое вещество надпочечников, ренин-альдостероновая система и поджелудочная железа.

Они контролируются нервными влияниями или концентрацией определенных веществ в крови.

Классификация гормонов по биологическим функциям; по механизму действия; по химическому строению; различают 4 группы: 1. Белково-пептидные 2. Гормоны-производные аминокислот 3. Гормоны стероидной природы 4. Эйкозаноиды

Классификация гормонов по биологическим функциям.

Классификация гормонов по химическому строению

1. Белково — пептидные гормоны Гормоны гипоталамуса; гормоны гипофиза; гормоны поджелудочной железы — инсулин, глюкагон; гормоны щитовидной и паращитовидной желез – соответственно кальцитонин и паратгормон. Вырабатываются в основном путем прицельного протеолиза. У гормонов короткое время жизни, имеют от 3 до 250 АМК остатков.

Главный анаболический гормон – инсулин, главный катаболический гормон — глюкагон

Некоторые представители белково — пептидных гормонов: тиролиберина (пироглу-гис-про- NN НН 22 ), инсулина и соматостатина.

2. Гормоны — производные аминокислот Являются производными аминокислоты — тирозина. К ним относятся гормоны щитовидной железы — трийодтиронин (( II 33 ) и тироксин ( II 44 ), а а также — адреналин и норадреналин – катехоламины.

Гормоны щитовидной железы

Схема синтеза трийодтиронинов

3. Гормоны стероидной природы Синтезируются из холестерина (на рис. ) Гормоны коркового вещества надпочечников – кортикостероиды (кортизол, кортикостерон) Гормоны коркового вещества надпочечников – минералокортикоиды (андостерон) Половые гормоны: андрогены (19 «С» ) и эстрогены (18 «С» )

Синтез основных кортикостероидов

Эйкозаноиды Предшественником всех эйкозаноидов является арахидоновая кислота. Они делятся на 3 группы – простагландины, лейкотриены, тромбоксаны.

Эйказоноиды — медиаторы (локальные гормоны ) — широко распространенная группа сигнальных веществ , , которые образуются почти во всех клетках организма и и имеют небольшую дальность действия.

Этим они отличаются от классических гормонов , , синтезирующихся в специальных клетках желез внутренней секреции. .

Характеристика разных групп эйказоноидов Простагландины (Pg)— синтезируются практически во всех клетках, кроме эритроцитов и лимфоцитов. Выделяют такие типы простагландинов A, B, C, D, E, F.

Функции простагландинов сводятся к изменению тонуса гладких мышц бронхов , мочеполовой и сосудистой систем, желудочно-кишечного тракта, при этом направленность изменений различна в зависимости от типа простагландинов и условий. Они также влияют на температуру тела.

Простациклины являются подвидом простагландинов (Pg I), но дополнительно обладают особой функцией— ингибируют агрегацию тромбоцитов и обусловливают вазодилатацию. Особенно активно синтезируются в эндотелии сосудов миокарда , , матки , слизистой желудка. .

Тромбоксаны и лейкотриены Тромбоксаны (Tx) образуются в тромбоцитах, стимулируют их агрегацию и вызывают сужение мелких сосудов. Лейкотриены (Lt) активно синтезируются в лейкоцитах, в клетках лёгких, селезёнки, мозга, сердца.

Выделяют 6 типов лейкотриенов: A, B, C, D, E, F. В лейкоцитах они стимулируют подвижность, хемотаксис и миграцию клеток в очаг воспаления. Также вызывают сокращение мускулатуры бронхов в дозах в 100— 1000 раз меньших, чем гистамин.

Взаимодействие гормонов с рецепторами клеток-мишеней Для проявления биологической активности связывание гормонов с рецепторами должно приводить к образованию сигнала, который вызывает биологический ответ.

Например: щитовидная железа – мишень для тиротропина, под действием которого увеличивается количество ацинарных клеток, повышается скорость синтеза тиреоидных гормонов.

Клетки-мишени отличают соответсвующий гормон, благодаря наличию соответствующего рецептора.

Общая характеристика рецепторов Рецепторы могут находится: — на поверхности клеточной мембраны — внутри клетки – в цитозоле или в ядре. Рецепторы – это белки, могут состоять из нескольких доменов.

Мембранные рецепторы имеют домен узнавания и связывания с гормоном, трансмембранный и цитоплазматический домены.

Внутриклеточные (ядерные) – домены связывания с гормоном, с ДНК и с белками, регулирующие трансдукцию.

Основные этапы передачи гормонального сигнала: через мембранные (гидрофобные) и и внутриклеточн ые ые (гидрофильные ) рецепторы. Это быстрый и медленный пути.

Гормональный сигнал меняет скорость метаболических процессов ответ путем: — изменение активности ферментов — изменение количества ферментов. По механизму действия различают гормоны: — взаимодействующие с мембранными рецепторами (пептидные гормоны, адреналин, эйкозаноиды) и — взаимодействующие с внутриклеточными рецепторами (стероидные и тиреодные гормоны)

Передача гормонального сигнала через внутриклеточные рецепторы для стероидных гормонов (гормоны коры надпочечников и половые гормоны), тиреодных гормонов (Т 3 и Т 4). Медленный тип передачи.

Передача гормонального сигнала через ядерный рецептор.

Передача гормонального сигнала через мембранные рецепторы Передача информации от первичного посредника гормона осуществляется через рецептор. Этот сигнал рецепторы трансформируют в изменение концентрации вторичных посредников, получивших название вторичных мессенджеров.

Сопряжение рецептора с эффекторной системой осуществляется через GG –белок.

Общим механизмом, посредством которого реализуются биологические эффекты является процесс «фосфорилирования – дефосфорилирования ферментов» Существуют разные механизмы передачи гормонального сигналы через мембранные рецепторы – аденилатциклазная, гуанилатциклазная, инозитолфосфатная системы и другие.

Сигнал от гормона трансформируется в изменении концентрации вторичных посредников – ц. АМФ, ц. ГТФ, ИФ 3, ДАГ, СА 2+, NO.

Самая распространенная система передача гормонального сигнала через мембранные рецепторы – аденилатциклазная система. • Комплекс гормон-рецептор связан с G – белком, который имеет 3 субъединицы ( α , β и γ ). • В отсутствии гормона α — субъединица связана с ГТФ и аденилатциклазой.

• Комплекс гормон-рецептор приводит к отщеплению димера βγ от α ГТФ. Субъединица α ГТФ активирует аденилатциклазу, катализирующую образование циклической АМФ (ц. АМФ). ц. АМФ активирует протеинкиназу А(ПКА), фосфорилируюшую ферменты, которые меняют скорость метаболических процессов.

Протеинкиназы различают А, В, С и др.

Адреналин и глюкагон через аденилатциклазную систему передачи гормонального сигнала активируют гормонзависимую ТАГ-липазу адипоцитов. Происходит при напряжении организма (голодании, длительной мышечной работе, охлаждении).

Инсулин блокирует этот процесс. Протеинкиназа А фосфорилирует ТАГ-липазу и активирует ее. ТАГ-липаза отщепляет от от триацилглицеролов жирные кислоты с образованием глицерола.

Жирные кислоты окисляются и обеспечивают организм энергией.

Передача сигнала с адренорецепторов. АС – аденилатциклаза, Pk. A – протеинкиназа А, Pk. C – протеинкиназа С, Фл. С – фосфолипаза С, Фл. А 2 – фосфолипаза А 2, Фл.

D – фосфолипаза D, ФХ – фосфатидилхолин, ФЛ – фосфолипиды, ФК – фосфатидная кислота, Ах.

К – арахидоновая кислота, PIP 2 – фосфатидилинозитол бифосфат, IP 3 – инозитол трифосфат, DAG – диацилглицерол , , Pg – простагландины, LT – лейкотриены.

Адренорецепторы всех типов реализуют свое действие через Gs-белки. α- субъединицы этого белка активируют аденилатциклазу, которая обеспечивает синтез в клетке ц. АМФ из АТФ и активацию ц. АМФ зависимой протеинкиназы А.

ββ γ-субъединицы Gs-белка активируют Са 2+-каналы L-типа и макси-K+-каналы. Под влиянием ц. АМФ-зависимой протеинкиназы А происходит фосфорилирование киназы легких цепей миозина и она переходит в неактивную форму, не способную фосфорилировать легкие цепи миозина.

Процесс фосфорилирования легких цепей прекращается и гладкомышечная клетка расслабляется.

Американские ученые Роберт Лефковиц и Брайан Кобилка удостоились Нобелевской премии в 2012 г. за постижение механизмов взаимодействия рецепторов адреналина с G-белками. Взаимодействие бета-2 рецептора (обозначен синим цветом) c G- белками (обозначены зеленым цветом).

Рецепторы, сопряженные с G-белками, очень красивые, если рассматривать архитектурные молекулярные ансамбли клетки как шедевры природы.

Их называют «семиспиральными» , поскольку они, спирально упакованы в клеточной мембране на манер елочного серпантина и «пронизывают» ее семь раз, выставляя на поверхность «хвостик» , способный воспринять сигнал и передать конформационные изменения всей молекуле.

G-белки (англ. G proteins) — это семейство белков, относящихся к ГТФазам и функционирующих в качестве посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену ГДФ (синий цвет) на ГТФ (зеленый цвет) как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы — гетеротримерные ( «большие» ) и «малые» . Гетеротримерные G-белки — это белки с четвертичной структурой, состоящие из трёх субъединиц: альфа(α), бета (β) и гамма (γ).

Малые G-белки — это белки из одной полипептидной цепи, они имеют молекулярную массу 20— 25 к. Да и относятся к суперсемейству Ras малых ГТФаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков.

Обе группы G-белков участвуют во внутриклеточной сигнализации.

Циклический аденозинмонофосфат (циклический AMФ, ц. AMФ, c. AMP) — производное АТФ, выполняющее в организме роль вторичного посредника, использующегося для внутриклеточного распространения сигналов некоторых гормонов (например, глюкагона или адреналина), которые не могут проходить через клеточную мембрану. .

Каждой из систем передачи гормонального сигнала соответствует определенный класс протеинкиназ Активность протеинкиназ типа А регулируется ц. АМФ, протеинкиназы G — ц. ГМФ. Са 2+ — кальмодулинзависимые протеинкиназы находятся под контролем концентрации СА 2+.

Протеинкиназы типа С регулируются ДАГ. Повышение уровня какого-либо вторичного посредника приводит к активации определенного класса протеинкиназ. Иногда субъединица мембранного рецептора может обладать активностью фермента.

Например: тирозиновая протеинкиназа рецептора инсулина, активность которой регулируется гормоном.

Действие инсулина на клетки-мишени начинается после его связывания с мембранными рецепторами, при этом внутриклеточный домен рецептора обладает тирозинкиназной активностью. Тирозинкиназа запускает процессы фосфорилирования внутриклеточных белков.

Происходящее при этом аутофосфорилирование рецептора ведет к усилению первичного сигнала. Инсулин-рецепторный комплекс может вызывать активирование фосфолипазы С, образование вторичных посредников инозитолтрифосфата и диацилглицерола, активацию протеинкиназы С, ингибирование ц. АМФ.

Участие нескольких систем вторичных посредников объясняет многообразие и различия эффектов инсулина в разных тканях.

Другая система – гуанилатциклазная мессенджерская система. Цитоплазматический домен рецептора обладает активностью гуанилатциклазы (гемсодержащий фермент). Молекулы ц. ГТФ могут активировать ионные каналы или протеинкиназу GG , , фосфорилирующую ферменты. ц. ГМФ контролирует обмен воды и ионный транспорт в почках и кишечнике, а в сердечной мышце служит сигналом релаксации.

Передача гормонального сигнала через NONO

Инозитолфосфатная система. Связывание гормона с рецептором, вызывает изменение конформациии рецептора. Происходит диссоциация G-G- белка и ГДФ заменяется на ГТФ. Отделившаяся α-субъединица, связанная с молекулой ГТФ, приобретает сродство к фосфолипазе С.

Под действием фосфолипазы-С происходит гидролиз липида мембраны фосфатидилинозитол-4, 5 -бисфосфата (ФИФ 2) и образование инозитол-1, 4, 5 -трифосфат (ИФ 3) и диацилглицерол (ДАГ). ДАГ участвует в активации фермента протеинкиназы С (ПКС).

Инозитол-1, 4, 5 -трифосфат (ИФ 3) связывается специфическими центрами Са 2+-канала мембраны ЭР, это приводит к изменению конформации белка и открытию канала — Са 2+ поступает в цитозоль. В отсутствие в цитозоле ИФ 3 канал закрыт.

Биологическое действие гормона роста (ифр – инсулиноподобный фактор роста)

Источник: https://present5.com/gormony-klassifikaciya-i-mexanizm-dejstviya-gormonov/

Глава 12 гормоны – общая характеристика и механизмы действия

Гормоны классификация и механизм

Гормоны(от греческого hormaino– побуждаю) – это биологически активныевещества, которые выделяются эндокриннымиклетками в кровь или лимфу и регулируютв клетках-мишенях биохимические ифизиологические процессы.

Внастоящее время предложено расширитьопределение гормонов: гормоны– это специализированные межклеточныерегуляторы рецепторного действия.

В этом определениислова «специализированные регуляторы»подчеркивают, что регуляторная – главнаяфункция гормонов; слово «межклеточные»означает, что гормоны вырабатываютсяодними клетками и извне действуют надругие клетки; рецепторное действие –первый этап в эффектах любого гормона.

Биорольгормонов. Гормонырегулируют многие жизненные процессы– метаболизма, функции клеток и органов,матричные синтезы (транскрипцию,трансляцию) и другие процессы, определяемыегеномом (пролиферацию, рост, дифференцировку,адаптацию, клеточный шок, апоптоз и др.)

Эндокриннаясистема функционирует в тесной взаимосвязис нервной системой как нейроэндокринная.

Рис. 12.1. Схемавзаимосвязи регуляторных системорганизма.

  1. Синтез и секреция гормонов стимулируются внешними и внутренними сигналами, поступающими в ЦНС.

2– 3. Эти сигналы по нейронам поступаютв гипоталамус, где стимулируют синтезпептидных рилизинг-гормонов (либеринови статинов), которые стимулируют илиингибируют синтез и секрецию гормоновпередней доли гипофиза.

4 – 5. Гормоныпередней доли гипофиза (тропные гормоны)стимулируют образование и секрециюгормонов периферических эндокринныхжелез, которые поступают в кровь ивзаимодействуют с клетками-мишенями.

Уровень гормоновв крови поддерживается благодарямеханизмам саморегуляции (регуляцияпо принципу обратной связи). Изменениеконцентрации метаболитов в клетках-мишеняхподавляет синтез гормонов в эндокриннойжелезе или в гипоталамусе (6, 7). Синтези секреция тропных гормонов подавляетсягормонами эндокринных желез (8).

Классификация гормонов

Гормоныклассифицируются по химическомустроению, биологическим функциям, местуобразования и механизму действия.

Классификацияпохимическому строению.По химическому строению гормоны делятна 3 группы (табл. 12.1):

  • пептидные или белковые;
  • производные аминокислот;
  • стероидные
  • производные арахидоновой кислоты – эйкозаноиды (оказывают местное действие)

Таблица 12.1

Классификациягормонов по химическому строению

Пептидные (белковые)Производные аминокислотСтероиды
КортикотропинСоматотропинТиреотропинПролактинЛютропинЛютеинеизирующий гормонФолликулостимули-рующий гормонМелоноцитстимули-рующий гормонВазопрессинОкситоцинПаратгормонКальцитонинИнсулинГлюкагонАдреналинНорадреналинТрийодтиронин (Т3)Тироксин (Т4)ГлюкокортикоидыМинералокорти-коидыАндрогеныЭстрогеныПрогестиныКальцитриол

Клетки некоторыхорганов, не относящихся к железамвнутренней секреции (клетки ЖКТ, клеткипочек, эндотелия и др.), также выделяютгормоноподобные вещества (эйкозаноиды),которые действуют в местах их образования.

Классификациягормонов по биологическим функциям

Побиологическим функциям гормоны можноразделить на несколько групп (табл.12.2.)

Таблица12.2.

Классификациягормонов по биологическим функциям.

Регулируемые процессыГормоны
Обмен углеводов, липидов, аминокислот.Водно-солевой обмен.Обмен кальция и фосфатов.Репродуктивная функция.Синтез и секреция гормонов эндокринных желез.Инсулин, глюкагон, адреналин, кортизол,тироксин,соматотропин.Альдостерон, вазопрессин.Паратгормон, кальцитонин, кальцитриол.Эстрогены, андрогены, гонадотропные гормоны.Тропные гормоны гипофиза, либерины и статины гипоталамуса.

Эта классификацияусловна, поскольку одни и те же гормоны могут выполнять разные функции.

Например,адреналин участвует в регуляции обменалипидов и углеводов и, кроме этого,регулирует артериальное давление,частоту сердечных сокращений, сокращениегладких мышц.

Эстрогены регулируют нетолько репродуктивную функцию, но иоказывают влияние на обмен липидов,индуцируют синтез факторов свертываниякрови.

Источник: https://studfile.net/preview/5362660/page:40/

18. Гормоны, классификация и биологическая роль

Гормоны классификация и механизм

Гормоны – это органические вещества, которые образуются в тканях одного типа (эндокринные железы, или железы внутренней секреции), поступают в кровь, переносятся по кровяному руслу в ткани другого типа (ткани-мишени), где оказывают своё биологическое действие (т. е. регулируют обмен веществ, поведение и физиологические функции организма, а также рост, деление и дифференцировку клеток).

Железами внутренней секреции, или эндокринными, называют железы, не имеющие выводных протоков. Продукты своей жизнедеятельности — гормоны — они выделяют во внутреннюю среду организма, т. е. в кровь, лимфу, тканевую жидкость.

Действие гормонов основано на стимуляции или угнетении каталитической функции некоторых ферментов, а также воздействии на их биосинтез путем активации или угнетения соответствующих генов.

Деятельность желез внутренней секреции играет основную роль в регуляции длительно протекающих процессов:

  • обмена веществ,
  • роста,
  • умственного, физического и полового развития,
  • приспособления организма к меняющимся условиям внешней и внутренней среды,
  • обеспечении постоянства важнейших физиологических показателей (гомеостаза),
  • в реакциях организма на стресс.

При нарушении деятельности желез внутренней секреции возникают заболевания, называемые эндокринными.

Нарушения могут быть связаны либо с усиленной (по сравнению с нормой) деятельностью железы — гиперфункцией, при которой образуется и выделяется в кровь увеличенное количество гормона, либо с пониженной деятельностью железы —гипофункцией, сопровождаемой обратным результатом. К важнейшим железам внутренней секреции относятся:

  • щитовидная,
  • надпочечники,
  • поджелудочная,
  • половые,
  • гипофиз.

Эндокринной функцией обладает и гипоталамус (подбугровая область промежуточного мозга). Поджелудочная и половые железы являются железами смешанной секреции, так как кроме гормонов они вырабатывают секреты, поступающие по выводным протокам, т. е. выполняют функции и желез внешней секреции.

Щитовидная железа (масса 16—23 г) расположена по бокам трахеи чуть ниже щитовидного хряща гортани. Гормоны щитовидной железы (тироксин и трииодтиронин) в своем составе имеют иод, поступление которого с водой и пищей является необходимым условием ее нормального функционирования.

Гормоны щитовидной железы регулируют обмен веществ, усиливают окислительные процессы в клетках и расщепление гликогена в печени, влияют на рост, развитие и дифференцировку тканей, а также на деятельность нервной системы. При гиперфункции железы развивается базедова болезнь.

 

Надпочечники (масса 12 г) — парные железы, прилегающие к верхним полюсам почек. Как и почки, надпочечники имеют два слоя:

  • наружный — корковый,
  • внутренний — мозговой, являющиеся самостоятельными секреторными органами, вырабатывающими разные гормоны с различным характером действия.

Клетками коркового слоя синтезируются гормоны, регулирующие минеральный, углеводный, белковый и жировой обмен. Мозговым слоем надпочечников вырабатываются гормоны адреналин и норадреналин.

Они выделяются при сильных эмоциях —- гневе, испуге, боли, опасности.

В результате происходит перестройка функций организма в условиях действия чрезвычайных раздражителей и мобилизация сил организма для перенесения стрессовых ситуаций.

Поджелудочная железа имеет особые островковые клетки, которые вырабатывают гормоны инсулин и глюкагон, регулирующие углеводный обмен в организме. Так, инсулин увеличивает потребление глюкозы клетками, способствует превращению глюкозы в гликоген, уменьшая таким образом количество сахара в крови.

При недостаточном образовании инсулина уровень глюкозы в крови повышается, что приводит к развитию болезни сахарный диабет.  Другой гормон поджелудочной железы — глюкагон —является антагонистом инсулина и оказывает противоположное действие, т. е.

усиливает расщепление гликогена до глюкозы, повышая ее содержание в крови.

Важнейшей железой эндокринной системы организма человека является гипофиз, или нижний придаток мозга (масса 0,5 г). В нем образуются гормоны, стимулирующие функции других эндокринных желез.

В гипофизе выделяют три доли: переднюю, среднюю и заднюю, — и каждая из них вырабатывает разные гормоны.

Так, в передней доле гипофиза вырабатываются гормоны, стимулирующие синтез и секрецию гормонов щитовидной железы (тиреотропин), надпочечников (кортикотропин), половых желез (гонадотропин), а также гормон роста (соматотропин). 

Половые железы — семенники, или яички, у мужчин и яичники у женщин — относятся к железам смешанной секреции. Семенники вырабатывают гормоны андрогены, а яичники —эстрогены.

Они стимулируют развитие органов размножения, созревание половых клеток и формирование вторичных половых признаков, т. е.

особенностей строения скелета, развития мускулатуры, распределения волосяного покрова и подкожного жира, строения гортани, тембра голоса и др. у мужчин и женщин.

Гипоталамус. Функционирование желез внутренней секреции, в совокупности образующих эндокринную систему, осуществляется в тесном взаимодействии друг с другом и взаимосвязи с нервной системой. Вся информация из внешней и внутренней среды организма человека поступает в соответствующие зоны коры больших полушарий и другие отделы мозга, где осуществляется ее переработка и анализ.

От них информационные сигналы передаются в гипоталамус — подбугровую зону промежуточного мозга, и в ответ на них он вырабатывает регуляторные гормоны, поступающие в гипофиз и через него оказывающие свое регулирующее воздействие на деятельность желез внутренней секреции.

Таким образом, гипоталамус выполняет координирующую и регулирующую функции в деятельности эндокринной системы человека.

Классификация гормонов. По химической природе гормоны делятся на следующие группы:

  • пептидные – гормоны гипоталамуса, гипофиза, инсулин, глюкагон, гормоны паращитовидных желез;
  • производные аминокислот – адреналин, тироксин;
  • стероидные – глюкокортикоиды, минералокортикоиды, мужские и женские половые гормоны;
  • эйкозаноиды – гормоноподобные вещества, которые оказывают местное действие; они являются производными арахидоновой кислоты (полиненасыщенная жирная кислота).

По действию на биохимические процессы и функции гормоны делятся на:

  • гормоны, регулирующие обмен веществ (инсулин, глюкагон, адреналин, кортизол);
  • гормоны, регулирующие обмен кальция и фосфора (паратиреоидный гормон, кальцитонин, кальцитриол);
  • гормоны, регулирующие водно-солевой обмен (альдостерон, вазопрессин);
  • гормоны, регулирующие репродуктивную функцию (женские и мужские половые гормоны);
  • гормоны, регулирующие функции эндокринных желёз (адренокортикотропный гормон, тиреотропный гормон, лютеинизирующий гормон, фолликулостимулирующий гормон, соматотропный гормон);
  • гормоны стресса (адреналин, глюкокортикоиды и др.);
  • гормоны, влияющие на ВНД (память, внимание, мышление, поведение, настроение).

Свойства гормонов.

  • Высокая биологическая активность. Концентрация гормонов в крови очень мала, но их действие сильно выражено, поэтому даже небольшое увеличение или уменьшение уровня гормона в крови вызывает различные, часто значительные, отклонения в обмене веществ и функционировании органов и может привести к патологии.
  • Короткое время жизни, обычно от нескольких минут до получаса, после чего гормон инактивируется или разрушается. Но с разрушением гормона его действие не прекращается, а может продолжаться в течение часов и даже суток.
  • Дистантность действия. Гормоны вырабатываются в одних органах (эндокринных железах), а действуют в других (тканях- мишенях).
  • Высокая специфичность действия. Гормон оказывает своё действие только после связывания с рецептором. Рецептор – это сложный белок-гликопротеин, состоящий из белковой и углеводной частей. Гормон связывается именно с углеводной частью рецептора. Причём строение углеводной части имеет уникальную химическую структуру и соответствует пространственному строению гормона. Поэтому гормон безошибочно, точно, специфично связывается только со своим рецептором, несмотря на малую концентрацию гормона в крови.

Типы биологического действия гормонов:

  • Метаболическое – действие гормона на организм проявляется регуляцией обмена веществ (например, инсулин, глюкокортикоиды, глюкагон).
  • Морфогенетическое – гормон действует на рост, деление и дифференцировку клеток в онтогенезе (например, соматотропный гормон, половые гормоны, тироксин).
  • Кинетическое или пусковое – гормоны способны запускать функции (например, пролактин – лактацию, половые гормоны – функцию половых желёз).
  • Корригирующее. Гормонам принадлежит важнейшая роль в адаптации человека к различным факторам внешней среды. Гормоны изменяют обмен веществ, поведение и функции органов так, чтобы приспособить организм к изменившимся условиям существования.

Источник: https://vseobiology.ru/konspekty-k-gosam/15-biokhimiya-gos/364-18-gormony-klassifikatsiya-i-biologicheskaya-rol

Моя щитовидка
Добавить комментарий