Распад гликогена в мышцах ускоряет какой гормон

Содержание
  1. Синтез и распад гликогена
  2. ПОСМОТРЕТЬ ЁЩЕ:
  3. Основы метаболизма гликогена | CMT: Научный подход
  4. Роль гликогена
  5. Факторы, влияющие на запасы гликогена 
  6. Измерение концентрации гликогена 
  7. Гликоген: образование, восстановление, расщепление, функции – Всё о тренировках
  8. Регуляция образования гликогена
  9. Из чего синтезируется гликоген?
  10. Этапы образования гликогена
  11. Где запасается гликоген после образования?
  12. Надолго ли хватает запасов гликогена?
  13. Распад гликогена в мышцах ускоряет какой гормон
  14. Строение и структура кортизола
  15. Где и как вырабатывается кортизол
  16. Функции кортизола в организме
  17. Норма содержания в организме
  18. В каких случаях нужен анализ на кортизол
  19. Распад гликогена
  20. Синтез и распад гликогена реципрокны
  21. Способы активации синтазы гликогена
  22. Способы активации фосфорилазы гликогена
  23. Ковалентная модификация фосфорилазы
  24. Аденилатциклазный способ активации фосфорилазы гликогена
  25. Кальций-зависимая активация
  26. Аллостерическая (метаболическая) активация

Синтез и распад гликогена

Распад гликогена в мышцах ускоряет какой гормон

Гликоген — основной резервный полисахарид в клетках животных и человека, так как он плохо растворим в воде и не влияет на осмотическое давление в клетке, по­этому в клетке депонируется гликоген, а не свобод­ная глюкоза.

Разветвленная структура гликогена создает большое количество концевых мономеров. Это способствует работе ферментов, отщепляющих или присоединяющих мономеры при распаде или син­тезе гликогена, так как эти ферменты могут одно­временно работать на нескольких ветвях молеку­лы гликогена.

Гликоген депонируется главным образом в печени и скелетных мышцах. Гликоген хранится в цитозоле клеток в форме гранул. С гранулами связаны и не­которые ферменты, участвующие в обмене глико­гена, что облегчает им взаимодействие с субстратом. Синтез и распад гликогена протекают разными ме­таболическими путями (рис 4).

Гликоген синтезируется в период пищеварения (1—2 ч после приема углеводной пищи). Синтез гли­когена требует энергии. При включении одного мо­номера в

полисахаридную цепь протекают 2 реак­ции, сопряженные с расходованием АТР и UTP ( реакции 1 и 3).

После образования глюкозо-6-фосфата (гексокиназная реакция) происходит внутримолекулярный перенос остатка фосфорной кислоты из 6-го положения в 1-е. При этом образуется глюкозо-1-фосфат:

После изомеризации глюкозо-6-фосфата в глюкозо-1-фосфат протекает дополнительная активация глюкозного фрагмента. При этом расходуется 1 молекула УТФ, что эквивалентно расходованию 1-й молекулы АТФ. В результате образуется активированная форма – УДФ-глюкоза (рис. 4).

Затем с УДФ глюкозный остаток переносится на молекулу гликогена. Удлинение цепи гликогена катализирует фермент гликогенсинтетаза. Таким образом, цепь гликогена становится на 1 глюкозный фрагмент длиннее. Гликоген, в отличие от растительного крахмала, более сильно разветвлен. Для формирования ответвлений существует специальный фермент, который называется “гликогенветвящий фермент” .

Молекула гликогена синтезируется не с “нуля”, а происходит постепенное удлинение уже имеющегося кусочка цепи: “затравки” или праймера. И при распаде гликогена никогда не происходит полного разрушения его молекул.

Для включения одного остатка глюкозы в молекулу гликогена клетка расходует 2 молекулы АТФ. При распаде гликогена эта АТФ не регенерирует, а освобождается только Фн (неорганический фосфат).

Ключевым ферментом синтеза гликогена является гликогенсинтаза. Это “пункт вторичного контроля” (рис. 5).

Регуляция гликогенсинтазы: она активируется избытком глюкозо-6-фосфата. Поэтому если глюкозо-6-фосфат другими путями утилизируется медленно, то возрастание его концентрации приводит к увеличению скорости синтеза гликогена. Реакция, катализируемая гликогенсинтазой, необратима.

Мобилизация гликогена происходит в основном в период между приемами пищи и ускоряется во врем физической работы. Этот процесс происходит путем последовательного отщепления остатков глюкозы в виде глюкозо-1-фосфата с помощью гликогенфосфорилазы (рис. 4).

Этот фермент не расщеп­ляет a1,6-гликозидные связи в местах разветвле­ний, поэтому необходимы еще 2 фермента, после действия которых глюкозный остаток в точке вет­вления освобождается в форме свободной глюко­зы (реакции 2, 3). Гликоген распадает­ся до глюкозо-6-фосфата без затрат АТР.

Регуляция гликогенфосфорилазы: угнетается избытком АТФ, активируется избытком АДФ.

Рисунок 5

Распад гликогена в печени и мышцах имеет одну различающую их реакцию, обусловленную наличи­ем в печени фермента фосфатазы глюкозо-6-фосфа­та (табл. 1).

Таблица 1.

Присутствие в печени глюкозо-6-фосфатазы обусловливает главную функцию гликогена печени -освобождение глюкозы в кровь в период между при­емами пищи и использование ее другими органами. Таким образом, мобилизация гликогена печени обеспечивает содержание глюкозы в крови на по­стоянном уровне.

Это обстоятельство является обя­зательным условием для работы других органов и особенно мозга. Через 10—18 ч после приема пищи запасы гликогена в печени значительно истощают­ся, а голодание в течение 24 ч приводит к полному его исчезновению.

Глюкозо-6-фосфатаза содержит­ся также в почках и клетках кишечника.

Функция мышечного гликогена заключается в высвобождении глюкозо-6-фосфата, используемого в самой мышце для окисления и получения энергии,

Переключение процессов синтеза и мобилиза­ции гликогена в печени происходит при переходе состояния пищеварения в постабсорбтивный пери­од или состояния покоя на режим мышечной рабо­ты. В переключении этих метаболических путей в печени участвуют инсулин, глюкагон и адреналин, а в мышцах — инсулин и адреналин.

Влияние этих гормонов на синтез и распад гли­когена осуществляется путем изменения в противо­положном направлении активности 2 ключевых ферментов — гликогенсинтазы и гликогенфосфорилазы – с помощью их фосфорилирования и дефосфорилирования.

Первичным сигналом для синтеза инсулина и глюкагона является изменение концентрации глюкозы в крови.

Инсулин и глюкагон постоянно присутству­ют в крови, но при переходе из абсорбтивного со­стояния в постабсорбтивное изменяется их относи­тельная концентрация —инсулин-глюкагоновый индекс.

Таким образом, главным переключающим фактором в печени является инсулин-глюкагоновый индекс.

В постабсорбтивном периоде инсулин-глюкаго­новый индекс снижается и решающим фактором яв­ляется влияние глюкагона, который стимулирует рас­пад гликогена в печени. Механизм действия глюкагона включает каскад реакций, приводящий к активации гликогенфосфорилазы.

В период пищеварения преобладающим явля­ется влияние инсулина, так как инсулин-глюкаго­новый индекс в этом случае повышается. Под влия­нием инсулина происходит:

а) стимуляция транспорта глюкозы в клетки мы­шечной ткани;

б) изменение активности ферментов путем фос­форилирования и дефосфорилирования. Так, на­пример, инсулин активирует фосфодиэстеразу и снижает концентрацию сАМР в клетке. Кроме этого, инсулин активирует фосфатазу гликоген­синтазы, последняя дефосфорилируется и пере­ходит в активное состояние;

в) изменение количества некоторых ферментов путем индукции и репрессии их синтеза. Напри­мер, инсулин индуцирует синтез глюкокиназы, ускоряя тем самым фосфорилирование глюкозы в печени.

Адреналин имеет сходный с глюкагоном меха­низм действия на клетки печени.Но возможно включение и другой эффекторной сис­темы передачи сигнала в клетку печени. Тип рецепторов, с которыми взаимодействует адрена­лин, определяет, какая система будет использована.

Так, взаимодействие адреналина с b-рецепторами клеток печени приводит в действие аденилатциклазную систему. Взаимодей­ствие же адреналина с a,-рецепторами включает инозитолфосфатный механизм трансмембранной передачи гормонального сигнала.

Результатом действия обеих систем являются фос­форилирование ключевых ферментов и переклю­чение синтеза гликогена на его распад (рис.6, 7).

Активация адреналином мышечной глико­генфосфорилазы происходит иначе, так как распад гликогена в скелетных мышцах стимулируется мы­шечными сокращениями.

Киназа фосфорилазы (Са2+-зависимая) активируется при мышеч­ной работе под влиянием нервного импульса, так как в саркоплазме в этом случае возрастает концентра­ция ионов кальция. Это еще один механизм ускоре­ния распада гликогена в мышце.

Результатом действия адреналина в мышцах также являются актива­ция сАМР-зависимых протеинкиназ и активация фосфорилазы путем ее фосфорилирования (рис. 8).

При передаче сигнала от гормона через внутри­клеточные посредники происходит значительное его усиление, поэтому активация фосфорилазы глико­гена при участии любой системы передачи сигнала в клетку позволяет быстро образовать большое ко­личество глюкозы из гликогена. В мышцах это име­ет большое значение для совершения интенсивной работы в условиях стресса, например при убегании от опасности.

При умеренной нагрузке в мышцах действует другой механизм регуляции активности гликогенфосфорилазы – аллостерическая регуляция продуктами распада АТФ (АМФ).

При переходе из постабсорбтивного состоя­ния в абсорбтивное или по окончании мышечной работы прекращается секреция гормонов и вся сис­тема возвращается в исходное неактивное состоя­ние. Аденилатциклаза и фосфолипаза С инактивируются. сАМР разрушается фосфодиэстеразой, что вызывает переход всех внутриклеточных ферментов каскада в неактивную форму.

Значение регуляции скоростей синтеза и рас­пада гликогена в печени заключается в обеспечении постоянства концентрации глюкозы в крови. Регу­ляция обмена гликогена в мышцах обеспечивает энергетическим материалом как интенсивную рабо­ту мышц, так и энергозатраты в состоянии покоя.

Рисунок 6

Рисунок 7

Предыдущая12345678910111213141516Следующая

Дата добавления: 2015-09-18; просмотров: 6045; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЁЩЕ:

Источник: https://helpiks.org/5-31677.html

Основы метаболизма гликогена | CMT: Научный подход

Распад гликогена в мышцах ускоряет какой гормон

Переводчик: Татьяна Архарова

Редактор: Вероника Рис

Источник: NCBI

Во время интенсивных упражнений и длительных физических нагрузок мышечный гликоген расщепляется, высвобождая молекулы глюкозы.

Затем в результате анаэробных и аэробных процессов эти молекулы окисляются мышечными клетками с образованием молекул аденозинтрифосфата (АТФ), необходимых для сокращения мышц.

Скорость, с которой разрушается мышечный гликоген, зависит, прежде всего, от интенсивности физической активности.

Рекомендуемая суточная норма потребления углеводов у взрослых мужчин и женщин, ведущих сидячий образ жизни, составляет около 130 г. Эта величина зависит от продолжительности и интенсивности упражнений.

Например, в дни с небольшой физической активностью для восстановления мышц и гликогена мышечная ткань требует значительно меньше углеводов, чем в более тяжёлые тренировочные дни.

По этой причине текущие рекомендации по потреблению углеводов у спортсменов варьируются в зависимости от ежедневной нагрузки. Однако спортсмены часто не потребляют достаточного количества углеводов. 

Гликоген хранится в цитозоле клеток, занимая 2% объёма клеток сердца, 1-2% объёма клеток скелетных мышц и 5-6% объёма клеток печени.

Ни кратковременное голодание, ни длительное сидячее положение не влияют на запасы гликогена в мышцах, хотя гликоген в сердечной мышце может увеличиваться во время голодания, поскольку аминокислоты и глицерин преобразуются в глюкозу и сохраняются в виде гликогена, чтобы обеспечить сердце достаточными запасами энергии. 

Для подготовки организма к последующим тренировкам и соревнованиям важно, чтобы запасы гликогена в мышцах и печени были восполнены.

Данная статья обобщает рекомендации по питанию, тренировкам и восстановлению у спортсменов и людей, занимающихся регулярной физической активностью.

Во время интенсивных тренировок глюкоза в крови и мышечный гликоген являются основными видами «топлива», которые окисляются для получения АТФ. 

Помимо человеческих клеток мышц и печени, гликоген в небольших количествах накапливается в клетках мозга, сердца, клетках гладких мышц, почек, эритроцитах и лейкоцитах и даже жировых клетках. При нормальных условиях глюкоза — единственное топливо, которое мозг использует для производства АТФ; в состоянии покоя приблизительно 60% глюкозы в крови метаболизируется мозгом. 

Поскольку мозгу требуется глюкоза, крайне важно поддерживать эугликемию (нормальную концентрацию глюкозы в крови) во время отдыха и физических упражнений. Чтобы обеспечить достаточный запас глюкозы в мозге, печень выделяет глюкозу в кровоток. 

Использование мышечного гликогена во время упражнений снижает поглощение глюкозы из крови, тем самым помогая поддерживать уровень глюкозы в крови при отсутствии потребления углеводов. Достаточное потребление углеводов во время упражнений помогает поддерживать запасы гликогена в печени, и, как сообщается, экономит гликоген в мышечных клетках типа II (быстро сокращающихся). 

В 1920-х годах стало очевидно, что углеводы важны для тренировки мышц, что концентрация глюкозы в крови связана с усталостью и что увеличение потребления углеводов перед соревнованием, а также употребление леденцов во время него, предотвратило слабость и усталость. Несмотря на эти наблюдения и гораздо более раннее открытие гликогена в 1858 году, связь между содержанием углеводов в рационе, мышечным гликогеном и физической нагрузкой не была подтверждена до 1960-х годов.

гликогена во всем организме составляет приблизительно 600 г, и эта цифра варьируется в зависимости от массы тела, диеты, физической формы и физических упражнений. Во время интенсивных и длительных упражнений содержание гликогена в мышечных клетках может быть существенно ниже, но не падает менее 10% от начальных данных.

Роль гликогена

Мышечный гликоген — это не только источник энергии, но также и регулятор сигнальных путей, участвующих в тренировочной адаптации и влияющим на внутриклеточную осмоляльность. Измерение запасов гликогена в мышцах возможно благодаря методике мышечной биопсии.

Факторы, влияющие на запасы гликогена 

Запасы гликогена в печени и мышцах уменьшаются при физической нагрузке: чем дольше и интенсивнее активность, тем больше скорость и общее снижение запасов гликогена. Богатая углеводами диета приводит к постепенной суперкомпенсации запасов мышечного гликогена. 

Рисунок 1. Метаболизм гликогена в состоянии покоя и во время упражнений

Сокращение запасов гликогена в мышцах, которое происходит во время упражнений, является основным движущим фактором для последующего гликогенеза. После тренировки восстановление мышечного гликогена происходит в два этапа. 

На первом этапе синтез гликогена быстрый — 12-30 ммоль/г массы/ч, — не требуется инсулин и длится он 30-40 минут, если истощение гликогена значительное. Вторая фаза зависит от инсулина и протекает медленнее при эугликемии — 2-3 ммоль/г массы/час, — скорость которой может быть увеличена при дополнительном потреблении углеводов. 

Во время многих упражнений высвобождение инсулина притупляется, а адреналин выделяется надпочечниками. Скорость деградации гликогена (гликогенолиза) зависит от интенсивности упражнений. 

Измерение концентрации гликогена 

У тренированных и сытых спортсменов концентрация гликогена в мышцах составляет примерно 150 ммоль/кг массы после, по крайней мере, 8-12 часов отдыха. Она может достигать уровней 200 ммоль/кг массы у хорошо подготовленных, отдохнувших спортсменов после нескольких дней на высокоуглеводных диетах, а после длительных интенсивных тренировок гликоген в мышцах может упасть до

Источник: https://cmtscience.ru/article/osnovymetabolizma-glikogena

Гликоген: образование, восстановление, расщепление, функции – Всё о тренировках

Распад гликогена в мышцах ускоряет какой гормон

Гликоген – это запасной углевод животных, состоящий из большого количества остатков глюкозы. Запас гликогена позволяет быстро восполнять недостаток содержания в крови глюкозы, как только её уровень понижается, происходит расщепление гликогена, и в кровь поступает свободная глюкоза.

В организме человека глюкоза в основном хранится в виде гликогена. Запасать отдельные молекулы глюкозы клеткам не выгодно, так как это значительно повышало бы осмотическое давление внутри клетки.

По своей структуре гликоген напоминает крахмал, то есть полисахарид, который в основном запасают растения. Крахмал тоже состоит из остатков глюкозы, соединённых между собой, однако в молекулах гликогена гораздо больше разветвлений.

Качественная реакция на гликоген – реакция с йодом – даёт бурое окрашивание, в отличие от реакции йода с крахмалом, которая позволяет получить фиолетовое окрашивание.

Регуляция образования гликогена

Образование и расщепление гликогена регулируют несколько гормонов, а именно:

1) инсулин2) глюкагон

3) адреналин

Образование гликогена происходит после того, как концентрация глюкозы в крови повышается: раз глюкозы много, то её необходимо запасти впрок. Поглощение глюкозы клетками в основном регулируется двумя гормонами-антагонистами, то есть гормонами с противоположным действием: инсулином и глюкагоном. Оба гормона выделяются клетками поджелудочной железы.

Обратите внимание: слова «глюкагон» и «гликоген» очень похожи, но глюкагон – это гормон, а гликоген – запасной полисахарид.

Инсулин синтезируется, если глюкозы в крови много. Это обычно бывает после того, как человек поел, в особенности если еда – это богатая углеводами пища (например, если съесть мучное или сладкое). Все углеводы, которые содержатся в пище, расщепляются до моносахаридов, и уже в таком виде через стенку кишечника всасываются в кровь. Соответственно, уровень глюкозы повышается.

Когда рецепторы клеток реагируют на инсулин, клетки поглощают глюкозу из крови, и её уровень вновь снижается. Кстати, именно поэтому диабет – недостаток инсулина – образно называют «голод среди изобилия», ведь в крови после употребления пищи, которая богата углеводами, появляется очень много сахара, но без инсулина клетки не могут его поглотить.

Часть глюкозы клетки используют для получения энергии, а оставшуюся превращают в жир. Клетки печени используют поглощённую глюкозу для синтеза гликогена.

Если же в крови мало глюкозы, то происходит обратный процесс: поджелудочная железа выделяет гормон глюкагон, и клетки печени начинают расщеплять гликоген, выделяя глюкозу в кровь, или синтезировать глюкозу заново из более простых молекул, таких как молочная кислота.

Адреналин также приводит к распаду гликогена, потому что всё действие этого гормона направлено на то, чтобы мобилизовать организм, подготовить его к реакции по типу «бей или беги». А для этого необходимо, чтобы концентрация глюкозы стала выше. Тогда мышцы смогут использовать её для получения энергии.

Таким образом, поглощение пищи приводит к выделению в кровь гормона инсулина и синтезу гликогена, а голодание – к выделению гормона глюкагона и распаду гликогена. Выделение адреналина, происходящее в стрессовых ситуациях, также приводит к распаду гликогена.

Из чего синтезируется гликоген?

Субстратом для синтеза гликогена, или гликогеногенеза, как его по-другому называют, служит глюкозо-6-фосфат. Это молекула, которая получается из глюкозы после присоединения к шестому атому углерода остатка фосфорной кислоты. Глюкоза, образующая глюкозо-6-фосфат, попадает в печень из крови, а в кровь – из кишечника.

Возможен и другой вариант: глюкоза может быть заново синтезирована из более простых предшественников (молочной кислоты).

В таком случае из крови глюкоза попадает, например, в мышцы, где расщепляется до молочной кислоты с выделением энергии, а потом накопленная молочная кислота транспортируется в печень, и клетки печени заново синтезируют из неё глюкозу. Потом эту глюкозу можно превратить в глюкозо-6-фосфот и далее на его основе синтезировать гликоген.

Этапы образования гликогена

Итак, что же происходит в процессе синтеза гликогена из глюкозы?

1. Глюкоза после присоединения остатка фосфорной кислоты становится глюкозо-6-фосфатом. Это происходит благодаря ферменту гексокиназе. Этот фермент имеет несколько разных форм. Гексокиназа в мышцах немного отличается от гексокиназы в печени.

Та форма этого фермента, которая присутствует в печени, хуже связывается с глюкозой, а продукт, образующийся в ходе реакции, не ингибирует протекание реакции.

Благодаря этому клетки печени способны поглощать глюкозу только тогда, когда её много, и могу сразу превратить в глюкозо-6-фосфат очень много субстрата, даже если не успевают его переработать.

2. Фермент фосфоглюкомутаза катализирует превращение глюкозо-6-фосфата в его изомер – глюкозо-1-фосфат.

3. Полученный глюкозо-1-фосфат потом соединяется с уридинтрифосфатом, образуя УДФ-глюкозу. Катализирует этот процесс фермент УДФ-глюкозопирофосфорилаза. Эта реакция не может протекать в обратную сторону, то есть является необратимой в тех условиях, которые присутствуют в клетке.

4. Фермент гликогенсинтаза переносит остаток глюкозы на формирующуюся молекулу гликогена.

5. Гликогенразветвляющий фермент добавляет точки ветвления, создавая новые «веточки» на молекуле гликогена. Позже на конец этого ответвления добавляются новые остатки глюкозы с помощью гликогенсинтазы.

Где запасается гликоген после образования?

Гликоген – это необходимый для жизни запасной полисахарид, и хранится он в виде небольших гранул, находящихся в цитоплазме некоторых клеток.

Гликоген запасают следующие органы:

1. Печень. В печени гликогена довольно много, и это единственный орган, который использует запас гликогена для регуляции концентрации сахара в крови. До 5-6 % может составлять гликоген от массы печени, что примерно соответствует 100-120 граммам.

2. Мышцы. В мышцах запас гликогена меньше в процентном соотношении (до 1 %), однако суммарно по весу может превосходить весь гликоген, запасённый в печени. Мышцы не выделяют ту глюкозу, которая образовалась после распада гликогена, в кровь, они используют её только для своих собственных нужд.

3. Почки. В них обнаружено незначительное количество гликогена. Ещё меньшие количества были найдены в глиальных клетках и в лейкоцитах, то есть белых кровяных клетках.

Надолго ли хватает запасов гликогена?

В процессе жизнедеятельности организма гликоген синтезируется довольно часто, практически каждый раз после еды. Организму нет смысла запасать огромные количества гликогена, ведь основная его функция – это не служить донором питательных веществ как можно дольше, а регулировать количество сахара в крови. Запасов гликогена хватает на срок около 12 часов.

Для сравнения, запасённые жиры:

– во-первых, обычно имеют массу гораздо большую, чем масса запасённого гликогена,
– во-вторых, их может хватить на месяц существования.

К тому же стоит отметить, что организм человека может превращать углеводы в жиры, но не наоборот, то есть запасённый жир превратить в гликоген никак не получится, только напрямую использовать для получения энергии. А вот расщепить гликоген до глюкозы, потом разрушить саму глюкозу и использовать получившийся продукт для синтеза жиров организм человека вполне в состоянии.

(Просмотрено 6 675 раз, 13 сегодня) Наш проект целиком и полностью посвящен спорту, его аспектам, ведь мы все с Вами прекрасно знаем, что спорт это не только тренировки и питание, это увлекательный путь, в процессе которого человек познает не только свои физические, но и психологические возможности.

Источник: https://energysportlife.ru/glikogen-obrazovanie-vosstanovlenie-rasshheplenie-funktsii/

Распад гликогена в мышцах ускоряет какой гормон

Распад гликогена в мышцах ускоряет какой гормон

НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!

Для лечения щитовидки наши читатели успешно используют Монастырский чай. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Кортизол – стероид с очень неоднозначной репутацией. Его называют гормоном старости и даже смерти, но чаще всего – стрессовым гормоном. Кортизол (иначе гидрокортизол) вместе с адреналином первым реагирует на стрессовую ситуацию и в сравнении с катехоламином имеет очень длительный эффект.

Строение и структура кортизола

Стероидный гормон гидрокортизол был обнаружен в 1936 году биохимиком Кенделлом, а через год исследователь вычислил химическую структуру гормона.

По своему строению это классический стероид, химическая формула – C₂₁H₃₀O₅. Как и другие стероиды, он образуется из молекул холестерина, с помощью особых ферментов – дегидрогеназ и гидроксилаз.

Химическая структура кортизола очень похожа на другие известные стероиды – андрогены и анаболики.

Свободный кортизол в крови – достаточная редкость, обычно процент такой формы гормона невелик – до 10.

Гидрокортизол привык работать в паре с белками – он стремительно проникает внутрь клеток, соединяется с протеинами и отправляется дальше, к различным органам и тканям.

Основной партнер кортизола – это транскортин (КСГ), намного реже гормон связывается с альбумином. При этом биологически активная кортизольная форма – именно несвязанная, такой гормон быстрее всего распадается и выводится с мочой.

Где и как вырабатывается кортизол

Выработка кортизола проходит в коре надпочечников под неусыпным контролем гипофиза и гипоталамуса.

Сначала в мозг приходит сигнал о том, что возникла стрессовая ситуация, и гипоталамус быстренько синтезирует кортиколиберин – специальный рилизинг-гормон. Тот спешит в гипофиз, где отдает команду – получить адренокортикотропин (АКТГ). А уже АКТГ обеспечивает кортизольный всплеск в надпочечниках. И все это – за какие-то доли секунды.

  • голод (включая обычную диету)
  • любая ситуация страха
  • физическая тренировка
  • волнение перед спортивными состязаниями или экзаменами
  • проблемы на работе
  • воспалительный процесс в организме
  • травма любого характера
  • беременность и др

Уровень гидрокортизола в крови напрямую зависит от времени суток. Самый большой процент – ранним утром, в течение дня постепенно снижается. Кортизол вообще очень чутко реагирует на сон, поэтому дневной отдых тоже может вызвать выброс этого стрессового гормона.

Функции кортизола в организме

Как только этот стресс наступает, гидрокортизол включается в работу и воздействует одномоментно на самые разные системы и органы. Основные функции гормона:

  1. Снижает распад глюкозы в мышцах и одновременно повышает ее распад в других участках организма. Это нужно, чтобы обеспечить активную работу мышц и скорость в опасных условиях (например, если придется убегать и драться).
  2. Усиливает работу сердца и повышает сердечный ритм. При этом кровяное давление нормализуется, чтобы в момент опасности человеку не стало плохо.
  3. Улучшает работу мозга, обостряет все мыслительные процессы, помогает сконцентрироваться на появившейся проблеме.
  4. Подавляет любую воспалительную реакцию в организме или аллергический ответ, улучшает деятельность печени.
  5. Особую роль играет кортизол при беременности – гормон отвечает за формирование легочной ткани у плода.

В деятельности гидрокортизола на первый взгляд – одни плюсы, но для многих спортсменов (особенно бодибилдеров) этот стероид давно стал настоящей страшилкой. На борьбу с повышенным кортизолом тратятся огромные усилия и множество препаратов, и дело вот в чем.

Название «гормон старости» кортизол получил вполне заслуженно. Кортизольный всплеск не всегда спадает после исчезновения источника стресса – этот гормон любит задержаться в организме. А учитывая, что в состоянии хронического стресса сегодня живет значительный процент людей, повышенный кортизол можно найти у многих.

Организм при этом живет в эпицентре гормональной бури – сердце работает в усиленном ритме, давление начинает повышаться, мозг не отдыхает, органы изнашиваются и стареют. А кортизол, увлекшись выработкой глюкозы, начинает добывать ее где может, включая белки в мышцах. В итоге мышцы постепенно разрушаются, а вместе с сахаром начинает откладываться подкожный жир.

Норма содержания в организме

Норма кортизола в крови – понятие очень широкое. Самый большой разбег в значениях гормона у ребятишек с года и до 10 лет – 28-1049 нмоль/л. В 10-14 лет нормальные показатели составляют уже 55-690 нмоль/л. Кортизол у детей 14-16 лет считается нормой при диапазоне от 28 до 856 нмоль/л.

У взрослых людей после 16 лет норма общего гидрокортизола в крови – 138-635 нмоль/л. Нередко измеряется уровень свободного кортизола в моче, здесь нормальным показателем считается 28,5-213, 7 мкг/сутки.

В каких случаях нужен анализ на кортизол

Повышенный кортизол в крови – явный сигнал не только воспалений или перенесенного стресса, но и серьезных гормональных сбоев. Существует ряд симптомов, при которых анализ на общий и связанный гидрокортизол просто необходим. Сюда относятся следующие признаки:

  • раннее половое созревание
  • остеопороз
  • мышечная слабость и потеря масса тела без явных причин
  • акне (угри) у взрослых
  • нарушенная пигментация на коже (красно-фиолетовые растяжки на коже – подозрение на болезнь Иценко-Кушинга, бронзовый оттенок – признак болезни Аддисона)
  • оценка результатов терапии при болезнях Иценко-Кушинга и Аддисона
  • артериальная гипертензия (если классическое лечение не дает результатов)
  • у женщин – нарушения менструального цикла и избыточное оволосение

Повлиять на результаты анализов могут несколько факторов, поэтому при расшифровке протокола исследования обязательно нужно их учитывать. Пубертатный период и беременность, ожирение и заболевания печени, поликистоз яичников, стресс – все эти явления способствуют повышению кортизольного уровня в крови.

Источник: https://shchitovidka-gormon.ru/shhitovidnaya-zheleza/raspad-glikogena-v-myshtsah-uskoryaet-kakoj-gormon/

Распад гликогена

Распад гликогена в мышцах ускоряет какой гормон

Распад гликогена с образованием глюкозы происходит в период между приемами пищи, физической работе, при стрессе.

Пути мобилизации гликогена:

1. фосфоролитический.

2. амилолитический путь распада гликогена происходит при участии фермента амилазы.

Фосфоролитический путь – основной путь распада гликогена с образованием глюкозы:

В мышечной ткани нет фермента глюкозо-6-фосфатазы, поэтому гликоген мышц не распадается с

образованием глюкозы, а окисляется или аэробным или анаэробным путем с освобождением энергии. Через

10-18 часов после приема пищи запасы гликогена в печени значительно истощаются.

Регуляция уровня глюкозы в крови. Роль ЦНС, механизм действия инсулина, адреналина, глюкагона,

СТГ, глюкокортикоидов, тироксина и их влияние на состояние углеводного обмена.

Ведущее значение в регуляции углеводного обмена принадлежит центральной нервной системе.

Снижение уровня глюкозы в крови приводит к повышенной секреции адреналина, глюкагона, которые, поступая в орган-мишень для этих гормонов (печень), узнаются рецепторами мембран клеток печени и активируют фермент мембраны аденилатциклазу, запуская механизм, приводящий к распаду гликогена с образованием глюкозы.

Схема механизма взаимодействия адреналина и глюкагона с клеткой:

Адреналин – повышает уровень глюкозы за счет активации фермента фосфорилазы (аденилатциклазная система), которая приводит к распаду гликогена с образованием глюкозы, блокирует фермент гликогенсинтазу, т.е. синтез гликогена.

Глюкагон – действует подобно адреналину, но плюс к этому активирует ферменты глюконеогенеза.

Глюкокортикоиды – повышают уровень глюкозы крови, являясь индукторами синтеза ферментов глюконеогенеза.

СТГ актвирует глюконеогенез, тироксин активирует инсулиназу, расщепляющую инсулин, влияет на всасывание глюкозы в кишечнике.

2.4. Гликогенозы

Гликогенозы (болезни накопления гликогена) обусловлены дефектом ферментов, участвующих в распаде гликогена. Например, болезнь Гирке связана с отсутствием фермента глюкозо-6-фосфатазы, при этом наблюдается избыточное накопление гликогена в печени, гипогликемия и ее последствия. Болезнь Мак-Ардла: причина – отсутствие фосфорилазы в мышечной ткани.

При этом уровень глюкозы в крови в норме, но наблюдается слабость мышечной ткани и снижена способность выполнять физическую работу.

Болезнь Андерсена связана с дефектом, ветвящего фермента, что приводит к накоплению гликогена в печени с очень длинными наружными и редкими точками ветвления, вследствие этого – желтуха, цирроз печени, печеночная недостаточность, летальный исход (неразветвленный гликоген разрушает гепатоциты).

2,5 Концентрация глюкозы в крови поддерживается в течение суток на постоянном уровне 3,5-6,0 ммоль/л. После приема пищи уровень глюкозы возрастает в течение часа до 8 ммоль/л, а затем возвращается к норме.

В организме постоянный уровень глюкозы в крови поддерживается благодаря существованию нейрогуморальных механизмов. Основным показателем состояния углеводного обмена служит содержание глюкозы в крови и моче.

ГИПЕРГЛИКЕМИЯ- состояние, при котором уровень глюкозы выше нормы. Причины:

1. Физиологические – алиментарная, эмоциональная.

2. Патологические – сахарный диабет; стероидный диабет (Иценко-Кушинга) – гиперпродукция глюкокортикоидов коры надпочечников; гиперпродукция адреналина, глюкагона, СТГ тироксина.

ГИПОГЛИКЕМИЯ – состояние, при котором уровень глюкозы ниже нормы. Причины:

1. Сниженный выход глюкозы: заболевания печени, эндокринные заболевания (дефицит гормона роста, кортизола), наследственные метаболические нарушения (дефицит гликогенсинтетазы, галактоземия, непереносимость фруктозы, печеночные формы гликогенозов).

2. Увеличенная утилизации глюкозы: снижение запасов жиров (нарушение питания), нарушение окисления жирных кислот, гиперплазия β-кл. подж. железы, передозировка инсулина, болезнь Аддисона – гипопродукция глюкокортикоидов.

ГЛЮКОЗУРИЯ – появление сахара в моче. Если уровень глюкозы в крови составляет 8-10 ммоль/л, то нарушается

почечный порог для глюкозы и она появляется в моче. Причины:

1. физиологические:

– алиментарная глюкозурия

– глюкозурия беременных

– нейрогенная на почве стрессовых состояний

2. патологические:

– сахарный диабет

– острый панкреатит

– острые инфекционные заболевания

2.6. Сахарный диабет, биохимическая характеристика патогенеза.

Это заболевание, возникающее вследствие абсолютного или относительного дефицита инсулина.

Инсулин – единственный гормон, понижающий уровень глюкозы в крови. Механизм:

-повышает проницаемость клеточных мембран для глюкозы в клетках жировой и мышечной ткани, под его влиянием белки-транспортеры ГЛЮТ-4 перемешаются из цитоплазмы в мембрану клетки, где соединяются с глюкозой и транспортируют её во внутрь клетки;

-активирует гексокиназу, фруктокиназу, пируваткиназу (стимулирует гликолиз);

-активирует гликогенсинтетазу (стимулирует синтез гликогена);

-активирует дегидрогеназу пентозо-фосфатного пути;

-по механизму хронической регуляции является индуктором синтеза гексокиназы и репрессором синтеза ферментов глюконеогенеза (блокирует глюконеогенез);

-30% углеводов превращает в липиды;

-стимулирует ЦТК, активируя фермент синтетазу, которая катализирует реакцию взаимодействия ацетил-КоА с ЩУК;

Сахарный диабет (СД) классифицируют с учетом различия генетических факторов и клинического течения на две основные формы: диабет I типа – инсулинзависимый (ИЗСД), и диабет II типа – инсулиннезависимый (ИНСД).

ИЗСД – заболевание, вызванное разрушением β-клеток островков Лангерханса поджелудочной железы, вследствие аутоиммунных реакций, вирусных инфекций (вирус оспы, краснухи, кори, эпидемический паротит, аденовирус).

При СД снижено соотношение инсулин/глюкагон. При этом ослабевает стимуляция процессов депонирования гликогена и жиров, и усиливается мобилизация энергоносителей.

Печень, мышцы и жировая ткань даже после приема пищи функционируют в режиме постабсорбтивного состояния.

Гипергликемия – повышение конц. глюкозы в крови.

Она обусловлена снижением скорости использования глюкозы тканями вследствие недостатка инсулина или снижения биологического действия инсулина в тканях-мишенях.

При дефиците инсулина уменьшается количество белков-переносчиков глюкозы (ГЛЮТ-4) на мембранах инсулинзависимых клеток (жировой ткани мышц). В мышцах и печени глюкоза не депонируется в виде гликогена.

В жировой ткани уменьшается скорость синтеза и депонирования жиров. Активируется глюконеогенез из аминокислот, глицерола и лактата.

Глюкозурия – выделение глюкозы с мочой.

В норме проксимальные канальцы почек реабсорбируют всю глюкозу, если ее уровень не превышает 8,9 ммоль/л. Повышение концентрации глюкозы в крови превышает концентрационный почечный порог, что становится причиной появления ее в моче.

Кетонемия – повышение концентрации в крови кетоновых тел.

Жиры не депонируются, а ускоряется их катаболизм. Повышается концентрация неэтерифицированных жирных кислот, которые захватывает печень и окисляет их до ацетил – КоА. Ацетил-КоА превращается в β-гидроксимасляную и ацетоуксусную кислоты.

В тканях происходит декарбоксилирование ацетоацетата до ацетона, поэтому от больных исходит его запах. Увеличение концентрации кетоновых тел в крови (выше 20 мг/л) приводит к кетонурии.

Накопление кетоновых тел снижает буферную емкость крои и вызывает ацидоз.

Дефицит инсулина приводит к снижению скорости синтеза белков и усилению их распада. Это вызывает повышение концентрации аминокислот в крови, которые дезаминируются в печени. Образующийся при этом аммиак вступает в орнитиновый цикл, что приводит к увеличению концентрации мочевины в крови и моче – азотемия.

Полиурия – повышенное мочеотделение (3-4л в сутки и выше), т.к. глюкоза повышает осмотическое давление.

Полидипсия – постоянная жажда, сухость во рту, вследствие потери воды.

Полифагия – испытывают голод, часто едят, но теряют в массе тела, т.к. глюкоза не является источником энергии – «голод среди изобилия».

ИНСД – возникает в результате относительного дефицита инсулина вследствие:

– нарушения секреции инсулина

– нарушения превращения проинсулина в инсулин

– повышения катаболизма инсулина

-дефекта рецептора инсулина, повреждения внутриклеточных посредников инсулинового сигнала.

Поражает людей старше 40 лет, характеризуется высокой частотой семейных форм. причина поздних осложнений сахарного диабета – гипергликемия, которая приводит к повреждению кровеносных сосудов и нарушению функций различных тканей и органов.

Одним из основных механизмов повреждения тканей при сахарном диабете является гликозилирование белков, приводящее к изменению их конформации и функций. Макроангиопатии проявляются в поражении крупных и средних сосудов сердца, мозга, нижних конечностей (гангрена).

Микроангиопатия является результатом повреждения капилляров и мелких сосудов и проявляется в форме нефро-, нейро- и ретинопатии.

В возникновении микроангиопатий определенную роль играет гликозилирование белков, что приводит к возникновению нефропатии (нарушение функции почек) и ретинопатии (вплоть до потери зрения).

Коллаген составляет основу базальных мембран капилляров. Повышенное содержание гликозилированного коллагена ведет к уменьшению его эластичности, растворимости, к преждевременному старению, развитию контрактур. В почках такие изменения приводят к запустению клубочков и хронической почечной недостаточности.

Гликозилированные липопротеины, накапливаясь в сосудистой стенке, приводят к развитию гиперхолестеринемии и липидной инфильтрации. Они служат основой атером, происходит нарушение сосудистого тонуса, что приводит к атеросклерозу.

2.5.Проба на толерантность к глюкозе.

После приема пищи концентрация глюкозы может достигать 300-500 мг/дл и сохраняется на высоком уровне в постабсорбтивном периоде, т.е. снижается толерантность к глюкозе и наблюдается в случаях скрытой формы сахарного диабета. В этих случаях у людей отсутствуют клинические симптомы, характерные для СД, а концентрация глюкозы натощак соответствует норме.

Для выявления скрытой формы сахарного диабета проводится оральный тест на толерантность к глюкозе. Для этого определяют натощак содержание глюкозы в крови. После этого исследуемый получает нагрузку глюкозой из расчета 1г на кг массы, затем каждые 30 минут в течение 3-х часов определяют уровень глюкозы в крови. Результаты представляют в виде кривой.

3. Лабораторно-практическиая работа:

3.1 . Определение глюкозы в крови с помощью глюкометра One Touch ultra.

Определить содержание глюкозы натощак у студента. Проведение анализа. Подведите каплю крови на пальце руки к зоне теста на верхней части тест-полоски и удерживайте ее в таком положении до полного заполнения капилляра.

На экране появляется отчет в течение 5 секунд, после чего обозначается величина уровня глюкозы в ммоль/л. После удаления тест-полоски изображение на экране прибора гаснет и он готов к следующему проведению анализа.

Ход работы:Вымойте руки теплой водой с мылом и тщательно высушите. Обработайте палец руки ватой, смоченной в этиловом спирте и подсушите его. Стерильным скарификатором проколите кожу пальца и выдавите из него капельку крови, которую введите в капилляр тест-полоски. Затем обработайте место прокола ватой, смоченной в этиловом спирте.

2. Дать выпить сладкий чай.

3. Определить содержание глюкозы через 30 минут с момента принятия нагрузки.

4. Определить содержание глюкозы через 2,5 часа с момента принятия нагрузки.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/16_103980_raspad-glikogena.html

Синтез и распад гликогена реципрокны

Распад гликогена в мышцах ускоряет какой гормон

Метаболизм гликогена в печени, мышцах и других клетках регулируется несколькими гормонами, одни из которых активируют синтез гликогена, а другие – распад гликогена.

При этом в одной клетке не могут идти одновременно синтез и распад гликогена – это противоположные процессы с совершенно с разными задачами.

Синтез и распад исключают друг друга или, по-другому, они реципрокны.

Активность ключевых ферментов метаболизма гликогена гликогенфосфорилазы и гликогенсинтазы изменяется в зависимости наличия в составе фермента фосфорной кислоты – они активны либо в фосфорилированной, либо в дефосфорилированной форме.

Присоединение фосфатов к ферменту производят протеинкиназы, источником фосфата является АТФ:

  • фосфорилаза гликогена активируется после присоединения фосфатной группы,
  • синтаза гликогена после присоединения фосфата инактивируется.

Скорость фосфорилирования указанных ферментов повышается после воздействия на клетку адреналина, глюкагона и некоторых других гормонов. В результате адреналин и глюкагон вызывают гликогенолиз, активируя фосфорилазу гликогена.

Например,

  • во время мышечной работы адреналин вызывает фосфорилирование внутримышечных ферментов обмена гликогена. В результате фосфорилаза гликогена активируется, синтаза инактивируется. В мышце происходит распад гликогена, образуется глюкоза для обеспечения энергией мышечного сокращения.
  • при голодании в ответ на снижение глюкозы крови из поджелудочной железы секретируется глюкагон. Он воздействует на гепатоциты и вызывает фосфорилирование ферментов обмена гликогена, что приводит к гликогенолизу и повышению глюкозы в крови.

Способы активации синтазы гликогена

Аллостерическая активация гликогенсинтазы осуществляется глюкозо-6-фосфатом.

Еще одним способом изменения ее активности является химическая (ковалентная) модификация. При присоединении фосфата гликогенсинтаза прекращает работу, т.е.

она активна в дефосфорилированном виде.

Удаление фосфата от ферментов осуществляют протеинфосфатазы, которые активируются при действии на клетку инсулина – в результате он повышает синтез гликогена.

Вместе с этим, инсулин и глюкокортикоиды ускоряют синтез гликогена, увеличивая количество молекул гликогенсинтазы.

Способы активации фосфорилазы гликогена

Скорость гликогенолиза лимитируется только скоростью работы фосфорилазы гликогена. Ее активность может изменяться тремя способами:

  • ковалентная модификация,
  • кальций-зависимая активация,
  • аллостерическая активация с помощью АМФ.

Ковалентная модификация фосфорилазы

При действии некоторых гормонов на клетку происходит активация фермента через аденилатциклазный механизм, который является так называемым каскадным регулированием. Последовательность событий в данном механизме включает:

  1. Молекула гормона (адреналин, глюкагон) взаимодействует со своим рецептором;
  2. Активный гормон-рецепторный комплекс воздействует на мембранный G-белок;
  3. G-белок активирует фермент аденилатциклазу;
  4. Аденилатциклаза превращает АТФ в циклический АМФ (цАМФ) – вторичный посредник (мессенджер);
  5. цАМФ аллостерически активирует фермент протеинкиназу А;
  6. Протеинкиназа А фосфорилирует различные внутриклеточные белки:
  • одним из этих белков является синтаза гликогена, ее активность угнетается,
  • другим белком – киназа фосфорилазы, которая при фосфорилировании активируется;
  1. Киназа фосфорилазы фосфорилирует фосфорилазу “b” гликогена, последняя в результате превращается в активную фосфорилазу “а”;
  2. Активная фосфорилаза “а” гликогена расщепляет α-1,4-гликозидные связи в гликогене с образованием глюкозо-1-фосфата.

Аденилатциклазный способ активации фосфорилазы гликогена

Кроме гормонов, влияющих на активность аденилатциклазы через G-белки, существуют иные способы регуляции этого механизма. Например, после воздействия инсулина активируется фермент фосфодиэстераза, которая гидролизует цАМФ и, следовательно, снижает активность гликоген-фосфорилазы.

Кальций-зависимая активация

Некоторые гормоны влияют на углеводный обмен посредством кальций-фосфолипидного механизма. Активация ионами кальция заключается в активации киназы фосфорилазы не протеинкиназой, а ионами Ca2+ и кальмодулином.

Этот путь работает при инициации кальций-фосфолипидного механизма.

Такой способ оправдывает себя, например, при мышечной нагрузке, если гормональные влияния через аденилатциклазу недостаточны, но в цитоплазму под влиянием нервных импульсов поступают ионы Ca2+.

Аллостерическая (метаболическая) активация

Также существует активация гликогенолиза с помощью АМФ – такая аллостерическая активация происходит благодаря присоединению АМФ к молекуле фосфорилазы “b”

Молекулы АМФ, стимулирующие гликогенолиз, образуются в реакции фермента аденилаткиназы, активируемой при снижении количества АТФ и накоплении АДФ. Особенно ярко значение такой регуляции проявляется при интенсивной мышечной работе:

АДФ + АДФ ↔ АТФ + АМФ

Источник: https://biokhimija.ru/uglevody/reguljacija-obmena-glikogena.html

Моя щитовидка
Добавить комментарий